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Abstract

Steady film flow along a vertical wall with isolated step changes is studied numerically for Reynolds numbers Re � O(10�3–102) and
capillary numbers Ca � O(10�2–101). The lengthscale of free surface capillary features upstream of a step-in or step-out decreases uni-
formly with Re and switches from a �1/3 to a �1/2 power-law dependence on Ca. The height of the capillary features first grows with Re,
but eventually diminishes when inertia forces overpower capillary forces. Simultaneously, the key dynamics move from upstream to
downstream of the step, and switch from capillary arrest to inertial re-directioning of the falling liquid. The latter mechanism involves
a low-pressure region originating from the edge of the step. At a step-out, a new free surface feature appears with increasing Re, which is
caused by liquid overshoot in the horizontal direction and is restrained initially by capillary and subsequently by inertial forces. Simple
scaling arguments are shown to predict many of the above characteristics.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Liquid film flows occur in a variety of scales ranging
from geophysical to biological, and are of central impor-
tance in many industrial processes. The surface on which
the film moves is frequently irregular, either intentionally
or accidentally. Indicative examples are provided by the
corrugated surfaces used for heat/mass transfer intensifica-
tion in process equipment (Webb, 1994; Valluri et al.,
2005), and by the various coating and film deposition pro-
cesses employed in the manufacture of electronic compo-
nents and digital storage devices (Stillwagon and Larson,
1990). In the latter applications, it is rotational motion
(e.g. as in spin coating) rather than gravity that drives
the fluid film. For this reason, the study of a film whose
mean direction of flow coincides with the direction of the
driving force is of special interest.
0301-9322/$ - see front matter � 2008 Elsevier Ltd. All rights reserved.
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An interesting topic of investigation is the response of
the liquid film to topographic changes, such as step-in
and/or step-out. Most of the relevant studies have invoked
the lubrication approximation in the limit of Stokes flow
(Stillwagon and Larson, 1990; Prichard et al., 1992;
Kalliadasis et al., 2000; Aksel, 2000; Kalliadasis and
Homsy, 2001; Decre and Baret, 2003; Gaskell et al.,
2004). Important results are the confirmation of the accu-
racy of the lubrication approximation even outside its
formal range of validity, and the identification of robust
capillary features at the upstream side of steep topographic
changes. More specifically, a ridge is seen to form before a
step-in and a depression before a step-out. An early numer-
ical investigation of this problem, again in the Stokes limit,
was performed by Pozrikidis (1988). More relevant to the
present study is the recent numerical investigation by
Mazouchi and Homsy (2001), which provides a complete
interpretation of the dynamical role of the capillary ridge.

The importance of including inertia effects in film flows
has been discussed repeatedly (see for example Oron et al.,
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1997). However, most of the available results for an uneven
wall refer either to constant curvature (Kalliadasis and
Chang, 1994; Kliakhandler et al., 2001; Noakes et al.,
2006) or to slowly varying curvature (Ruschak and Wein-
stein, 2003; Roberts and Li, 2006). Khayat et al. (2004)
reported on the transient effects of inertia in axisymmetric
film flow over smooth step-ins and step-outs. Gaskell et al.
(2004) computed some steady, finite-Re flows along two-
dimensional orthogonal cavities, in a study mainly focused
on localized (three-dimensional) topography in the lubrica-
tion limit.

It is evident from the above that the available informa-
tion on the finite-Re behavior of films flowing over steep
topography is limited and fragmentary. Thus, in the pres-
ent paper we consider a vertical film flowing along a wall
with isolated steps of size up to the order of the film thick-
ness. Steady state is assumed, and the Navier–Stokes equa-
tions of motion are solved numerically by a finite-element
technique.

We note right away that our investigation leaves open
the question of stability of the computed steady solutions.
However, – apart from their use as a starting point for sta-
bility analysis – steady solutions of the present problem are
argued to be of physical significance even when unstable.
This happens because film flows are convectively unstable.
Thus, the base flow is only temporarily disrupted by trav-
eling disturbances and is re-established as soon as the dis-
turbances move downstream.

The paper outline is as follows: The problem setup and
the computational procedure are described in Section 2.
Section 3 presents the results, which consist of numerical
predictions of the free surface characteristics and of their
parametric variation with Re and Ca. In Section 4, we
try to interpret these results by invoking simple scaling
arguments and by investigating the structure of the flow.
Finally, Section 5 reviews the main conclusions.

2. Problem setup and computational procedure

We consider steady, two-dimensional free surface flow
of a thin liquid film down a vertical wall with isolated steps
Fig. 1. (a) The physical flow domain about a step-in and a step-out and (b) the
of depth D (Fig. 1a). The liquid has density, viscosity and
surface tension q, l and r respectively, and the flow is uni-
form in the transverse direction with volumetric flow rate
per unit span Q. Coordinates x and y originate from the
upper flat wall and correspond respectively to the stream-
wise (vertical) and normal (horizontal) direction. The loca-
tion of the free surface is denoted by y = h0(x). The
characteristic scales are based on the classical Nusselt solu-
tion for flow along a flat wall, i.e. a film of uniform thick-
ness H = (3mQ/g)1/3 and parabolic velocity profile u0(y) =
g(2Hy � y2)/2m with mean velocity U = Q/H = gH2/3m,
where m = l/q.

A complete description of the flow is provided by the
continuity and the steady form of the Navier–Stokes equa-
tion, together with the appropriate set of wall and free
surface boundary conditions. Scaling lengths with H,
velocities with U and pressure with qU2 results in the fol-
lowing dimensionless equations:

r � u ¼ 0; ð1Þ

ðu � rÞu ¼ �rp þ 1

Re
r2uþ 3

Re
g: ð2Þ

Here u = (u,v) is the dimensionless velocity vector, with u

and v its components in the x- and y-direction, respectively,
p is the dimensionless pressure and g is the unit vector in
the direction of gravity. Re is the Reynolds number, de-
fined as Re = Q/m = UH/m.

We further apply the no-slip and no-penetration bound-
ary condition for the velocity along the wall,

u ¼ v ¼ 0; ð3Þ

and the kinematic condition and balance of forces along
the free surface

u
dh
dx
¼ v; ð4Þ

n � T ¼ 3

Ca Re
2H cn: ð5Þ

Here, h is the dimensionless free surface location, n is the
unit vector normal to the free surface, 2Hc = (d2h/dx2)/
computational domain of a step-in with a sketch of the finite-element grid.
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Fig. 2. The location of the free surface along a cavity of dimensionless
length 40 and depth d = 1, for Re = 0.001 and Ca = 0.01, 0.075 and 0.25.
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[1 + (dh/dx)2]3/2 is the free surface curvature, Ca = 3lU/
r = qgH2/r is the capillary number and

T ¼ �pIþ 1

Re
½ruþ ðruÞT� ð6Þ

is the dimensionless stress tensor of the fluid, with I the
identity matrix. Finally, the computational inlet and outlet
are taken far enough from the cavity that the flow locally
corresponds to the undisturbed Nusselt solution.

According to the above, the problem is described by the
two dimensionless numbers Re and Ca, which express
respectively the ratios of inertia over viscous forces and
of viscous over capillary forces. Alternatively, Ca may be
substituted by the Weber number

We ¼ Re Ca
3
¼ qHU 2

r
; ð7Þ

which expresses the ratio of inertia over capillary forces. As
expected, the Weber number is more relevant than the cap-
illary number in the limit of high Re. The depth of the step
introduces an additional length ratio

d ¼ D
H
: ð8Þ

The steps presently considered have depths ranging from
small up to comparable with the film thickness, with
emphasis placed on the latter. Steps significantly deeper
than the film are expected to facilitate detachment of the li-
quid from the wall, a phenomenon beyond the scope of the
present work.

The above set of equations and boundary conditions is
solved by a standard Galerkin finite-element method. The
primary unknowns of the flow, which are the velocities u

and v, the pressure p and the location of the free surface
h, are expanded respectively in terms of bi-quadratic, bi-
linear and quadratic basis functions. The governing equa-
tions, weighted integrally with the basis functions, result
in the continuity, momentum, and kinematic residuals,
which are evaluated numerically using nine-point Gaussian
integration, and are solved for the unknown nodal values
by a Newton–Raphson iterative scheme. The computa-
tional methodology has been described in detail elsewhere
(Malamataris et al., 2002).

Implementation details specific to the present applica-
tion are demonstrated in Fig. 1b, which shows the mesh
for a step-in. The computational domain is taken equal
to 80 dimensionless lengths and the face of the step is
always positioned at the middle (x̂ ¼ 40). Finite-element
nodes are distributed in the y-direction so that their num-
ber increases when passing from the out-hanging to the
retracted side of the wall. The increase is roughly propor-
tional to the ratio of step depth to film thickness, so that
the y-separation of consecutive nodes does not change
drastically and the elements are only mildly distorted.
Thus, the y-locations before and after a step-in are given
respectively by the following relations:

y ¼ ŷhðxÞ and y ¼ ŷ½dþ hðxÞ� � d; ð9Þ
where ŷ takes values always in the interval [0, 1] but with
different densities before and after the corner. On the face
of the step, the additional nodes are held at fixed positions
from the bottom to the edge, so that the edge always cor-
responds to a node.

With respect to the grid distribution in the x-direction,
node clustering around the edge has been used to improve
the accuracy in the vicinity of the step. To that end, we
have applied the following algebraic rule:

x ¼ w anþ ð1� aÞ 1� tanh½bð1� nÞ�
tanh b

� �� �
; ð10Þ

where w is the distance from the inlet to the step, n is equi-
distributed in [0,1] and a,b are stretching parameters. A
typical computational mesh of the present study uses a =
1.9,b = 2.0, and involves 300 elements in the streamwise
direction, 10 elements above the overhanging wall and 20
elements above the retracted wall. Finer grid in the y-direc-
tion has been used to discretize deeper steps and grid inde-
pendence has been tested by doubling the number of
elements in both directions.
3. Results

3.1. The limit of creeping flow

We initially reproduce the results of Mazouchi and
Homsy (2001) for Stokes flow along an extensive one-
dimensional cavity (i.e. a step-in and a step-out separated
by 40 dimensionless length units). Fig. 2 shows the defor-
mation of the free surface as a function of Ca for d = 1
and Re = 0.001, and very good agreement is confirmed.
As already noted, the capillary features at the step-in are
stronger than at the step-out, and they are also dynamically
more significant. To this end, we recall Mazouchi and
Homsy’s interpretation of the role of the inlet ridge, as pro-
viding the pressure differential for pushing the liquid inside
the cavity, i.e. in the direction normal to the gravity force
that drives the mean motion.
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Fig. 4. The free surface profiles in the vicinity of a step-in with d = 1, for
Re = 1, 20, 40, 80 and (a) Ca = 0.01, (b) Ca = 0.075.
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The balance of gravity and capillary forces determines
the streamwise scale of the free surface deformations (Kall-
iadasis et al., 2000) as

l ¼ L
H
� Ca�1=3: ð11Þ

This scaling is valid both before the step-in and the step-
out. According to Eq. (11), the capillary features grow in
length with increasing surface tension. Mazouchi and
Homsy also showed that at the opposite end of decreasing
surface tension the deformation diminishes exponentially
so as to keep providing the driving force at the correct
scale.

The height of the capillary features (i.e. the positive or
negative deviation from the flat free surface, hcap � 1,
where hcap is the film height at the ridge or depression) is
expected to depend on the depth of the step. Predictions
for creeping flow (Re = 0.001) are provided in Fig. 3. In
the limit of an infinitesimal step, the height of the ridge
before the step-in and the height of the depression before
the step-out coincide and are roughly equal to 10% of the
depth of the step. This symmetry is broken in opposite
directions with increasing step size: The ridge grows faster
than the step and the depression slower, with the deviation
becoming quantitatively significant when d = O(1). How-
ever, because the rate of change with d is roughly uniform,
there appears to exist no strictly linear region where
(hcap � 1)/d � const. In this sense, the criterion d < 0.5 pro-
posed by Decre and Baret (2003) must be considered more
a convenient approximation than a rigorous limit.

3.2. The effect of inertia at a step-in

The combined effects of inertia and capillarity on the
free surface characteristics are introduced in Fig. 4a and
b, which presents free surface profiles as a function of Re

for a step-in with dimensionless depth d = 1 and capillary
numbers Ca = 0.01 and 0.075, respectively. It is readily
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Fig. 3. The height of the capillary features upstream of a step-in and a
step-out in the limit of creeping flow (Re = 0.001), as a function of the
depth of the step. Note that, in the figure, the height is normalized with the
step depth.
observed that the streamwise lengthscale of the capillary
features uniformly decreases with both Re and Ca. Also,
with increasing Re the free surface becomes wavier and
the ridge is gradually transformed into a series of damped
stationary capillary waves. The shortening of the capillary
length with increasing inertia is accompanied by a gradual
displacement of the ridge extremum towards the topo-
graphic discontinuity.

The height of the capillary ridge varies inversely with
Ca, i.e. strong surface tension results in more pronounced
features. However, the dependence on inertia is strickingly
non-monotonic. With increasing Re, the capillary ridge ini-
tially grows in height, reaching a maximum that is signifi-
cantly higher than the creeping flow value, but then
decreases and eventually disappears altogether. This evolu-
tion is postponed to higher Re with decreasing Ca. Thus,
the disappearance of the capillary features is manifested
in Fig. 4b, whereas it has not yet occurred for the Re range
depicted in Fig. 4a.

The parametric variation of the characteristics of the
capillary ridge is shown in detail in Fig. 5a–c. The depen-
dence of the ridge height on Re and Ca is depicted in
Fig. 5a for d = 1. With decreasing Ca, the maximum height
becomes stronger, occurs at higher Re and is accompanied
by a wider plateau. The disappearance of the ridge with



Table 1
The We number corresponding to the disappearance of upstream capillary
waves at a step-in, as a function of dimensionless step depth, d

d We

0.01 2.02
0.1 1.99
0.2 1.94
0.5 1.80
1.0 1.63
1.5 1.61
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Fig. 5. Parametric variation of the height of the capillary ridge upstream
of a step-in: (a) The ridge height as a function of Re for various Ca. (b)
The conditions where the ridge disappears. Points are numerical data and
the line is the function ReCa = 4.9. (c) The ridge height, normalized with
d, as a function of Re for dimensionless step depths d = 0.1, 0.5, 1.
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increasing inertia occurs at a Re inversely proportional to
Ca. This trend is confirmed by Fig. 5b, where points are
numerical data indicating values of the product ReCa

where the ridge ceases to exist for d = 1 and the line corre-
sponds to Re Ca = 4.9. The disappearance of the ridge at a
constant value of the Weber number (We = Re Ca/3 =
1.63) is evidently interpreted as a result of the dominance
of inertia over capillary forces.

The effect of the dimensionless depth, d, is shown in
Fig. 5c, where the ridge height divided by d is plotted as
a function of Re for Ca = 0.075 and d = 0.01, 0.5 and
1.0. Deepening of the step-in in this range leads to a signif-
icantly stronger effect on the free surface and displaces both
the maximum and the disappearance of the ridge to lower
Re. As a consequence of the latter, the numerical value of
Weber number that corresponds to the disappearance of
the ridge is not constant but varies with the dimensionless
depth of the step. Some indicative values of We as a func-
tion of d are given in Table 1.

The characteristics of the free surface may interact with
the local structure of the flow imposed by the steep topo-
graphic change. In particular, the flow along a step-in will
undergo at finite Re inertial separation, and the effect of the
resulting eddy is expected to be significant, in particular at
d � O(1). A representative evolution of the separation eddy
with increasing Re is shown in Fig. 6 for Ca = 0.075 and
d = 1. (Note that the scale is stretched in the y-direction,
so that both the separation region and the free surface fea-
tures are accommodated.) It is observed that the eddy ini-
tially grows, then remains roughly constant in size for a
significant range of Re (10–40) and finally continues to
grow after the disappearance of the capillary ridge. Also,
with increasing Re the free surface over the step tends pro-
gressively to align with the separatrix, and eventually
becomes parallel to it after the disappearance of the ridge.

Two additional flow details, which occur in a limited
range of the parameter space, are shown in Fig. 7.
Fig. 7a documents that, at very small Re(Re = 1, Ca =
0.075), the separation along a deep step-in may be
restricted to the edge of the step. The flow re-attaches fur-
ther along the face of the step and separates again in the
vicinity of the corner. Fig. 7b refers to conditions leading
to a high capillary ridge (Re = 100, Ca = 0.02) and shows
that the combination of intense capillary wrinkling and
increased inertia may result in an additional separation
region below the ridge and before the edge of the step.

3.3. The effect of inertia at a step-out

The combined effects of inertia and capillarity on the
free surface characteristics are introduced by Fig. 8, which
presents free surface profiles as a function of Re for a step-
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Fig. 6. The evolution with increasing Re of the flow field around a step-in with d = 1.0, for Ca = 0.075.
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out with dimensionless depth d = 1.5 and capillary number
Ca = 0.075. It is observed that – similarly to the behavior
at a step-in – the capillary features upstream of the step
become more oscillatory and their streamwise length uni-
formly decreases with Re. Also, with increasing Re the
depression initially grows in height but then declines and
eventually disappears.

A new characteristic of the flow at high Re that is evi-
dent in Fig. 8 is the appearance of a ridge after the step-
out, which is evidently caused by an overshoot of the liquid
film as it is deflected in the horizontal direction by the step.
We call this feature the inertial ridge. The parametric var-
iation of the characteristics of the inertial ridge is shown in
detail in Fig. 9a and b. The dependence of the ridge height
on Re is depicted in Fig. 9a for d = 1.5 and Ca = 0.02, 0.04,
0.075 and 0.25. Two different types of behavior are noted
with increasing Re: Initially the height of the ridge varies
strongly with Ca, but then the curves for all Ca nearly con-
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verge. This trend indicates that surface tension, which
restrains the ridge at low Re, is replaced by an inertial
mechanism at high Re. Therefore, the asymptote represents
the limit of negligible capillary forces, as is indeed
confirmed by noting that the curve for each Ca depicted
joins the asymptote at a Re inversely proportional to Ca

(We � 1.9).
In accord with the significance of capillary forces at low/

intermediate Re, the inertial ridge appears at a Re that var-
ies inversely with Ca. However, the transition does not
occur at a constant We. Representative numerical data
are shown in Fig. 9b for d = 1.5 (closed circles – right axis),
and indicate that the values of the product Re Ca span
more than an order of magnitude. Also depicted in the fig-
ure is the distance from the crest of the ridge to the edge of
the step (open circles – left axis). It is observed that the
emerging deformation is very elongated at low Ca, but
attains a size of the order of the film thickness at high
Ca. A scaling analysis will be presented in the discussion
section that interprets this behavior.
The effect of the dimensionless depth, d, on the size of
the ridge is shown in Fig. 10, where the ridge height divided
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by d is plotted as a function of Re for Ca = 0.075 and
d = 0.01, 0.1, 0.5, 1.0 and 1.5. We observe that for d� 1
the data collapse to one curve, i.e. in the linear limit the
ridge scales with the depth of the step. Increasing d, results
in an impressive growth of the protrusion with Re, and in a
shift of its onset to lower Re. For d � O(1), the onset
asymptotes to a roughly constant Re, but the ridge height
at high Re keeps growing with d. This behavior may be
understood by considering that the horizontal part of the
step serves as a launching pad for the liquid to be ejected
in the y-direction. Thus, the deeper the step the more com-
plete the transformation of the x-momentum into y-
momentum.

As with the step-in, the characteristics of the free surface
along a step-out may interact with the local structure of the
flow imposed by the steep topographic change. A represen-
tative evolution of the structure of the flow with increasing
inertia is shown in Fig. 11 for Ca = 0.075 and d = 1.5, and
demonstrates the existence of two separation regions. The
one at the foot of the step is affected by the abruptness in
change of flow direction. It initially grows with Re, then
shrinks as the capillary waves are pushed towards the step
and eventually grows again after the waves disappear.

At high Re, an additional separation region appears
below the inertial ridge; it originates at the edge of the step,
is elongated in the streamwise direction and grows con-
stantly with Re. Thus, it is noted that – unlike the situation
at the step-in – separation at the edge of the step-out neces-
sitates a significant magnitude of inertia. The difference
between the two is explained by the role of gravity, which
in the former case promotes detachment of the film from
the wall, whereas in the latter assists the film to stay
attached.

4. Discussion

In the previous section, the main characteristics of
steady, vertical film flow along isolated step-ins and step-
outs were numerically documented. In the discussion that
follows, we will try to understand this phenomenology by
invoking simple scaling arguments and by examining fur-
ther the structure of the flow field.
4.1. The capillary lengthscale

The scaling arguments of Kalliadasis et al. (2000) and
Mazouchi and Homsy (2001) may be extended to finite
inertia in order to predict the streamwise length of the cap-
illary features. More specifically, at small to intermediate
Re the capillary pressure at the step-in is still the main force
driving the fluid horizontally (i.e. normal to the direction of
gravity), but it must now be sufficient to overcome the com-
bined effect of the gravitational force and film inertia. The
same force balance applies upstream of the step-out, where
the capillary depression appears as a reaction to the weight
of the film and to the change in flow direction.

Denoting by l = L/H the dimensionless streamwise scale
of the capillary features before the step, and taking their
height to be at most comparable to the film thickness, we
may write the following order-of-magnitude estimate of
the streamwise momentum balance:

qg þ qU 2

L
� r

H

L3
) l3 þ Re

3

� �
l2 � 1

Ca
: ð12Þ

Here, the pressure gradient has been approximated as
op/ox � ro3h/ox3 according to the capillary contribution
of the free surface boundary condition. The influence of
viscous forces that appears to be neglected in Eq. (12) is
in fact hidden in the definition of the velocity scale, U,
which results from a balance of the undisturbed viscous
and gravity forces. Thus, the term ‘‘qg” on the l.h.s. of
Eq. (12) actually represents the local imbalance between
gravity and viscous forces.

Two limits are identified in Eq. (12). Neglecting inertia
we recover the Stokes scaling, Eq. (11). In the opposite
limit of dominant inertia over gravity, we take the high-
Re limit

l � Re�1=2Ca�1=2 � We�1=2: ð13Þ

The sole dependence of the capillary lengthscale on We
number (i.e. the ratio of inertia to capillary forces) indi-
cates that viscous forces have no additional dynamic role
apart from the definition of the velocity scale, U. A crite-
rion of transition from the capillary-gravity to the capil-
lary-inertia regime is provided by equating the two terms
on the l.h.s. of Eq. (12) and substituting back the resulting
value l = Re/3. Thus, we find for the transition Reynolds
number, Ret,

Ret ¼
3

2Cað Þ1=3
: ð14Þ

The above scaling estimates are now checked by com-
parison with numerical results. We have tried more than
one way to define the streamwise length scale, l, and have
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Fig. 11. The evolution with increasing Re of the flow field around a step-out with d = 1.5, for Ca = 0.075.
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found that the trends to be discussed next are insensitive to
the specific choice. Eventually, we adopted the definition
shown in Fig. 12, which sets the lengthscale equal to the
section, AB, marked on the y = H horizontal line by the
two tangents to the main ridge at the locations of maxi-
mum absolute slope. We also confirmed that the ridge
before a step-in and the depression before a step-out scale
in exactly the same way, and we present data only for the
former.
The values of l calculated according to the above proce-
dure are plotted in Fig. 13a–d as functions of Ca for four
different Re. Points correspond to the numerical results
and lines to the asymptotic estimates l � Ca�1/3 and l �
Ca�1/2. The data confirms the existence of two different
regimes and verifies the above asymptotic limits. They fur-
ther demonstrate that the transition from the capillary-
gravity to the capillary-inertia regime is not fixed. More
specifically, with increasing Re the capillary-gravity regime
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rapidly shrinks towards the small-Ca end of the plots, in
quantitative agreement with the prediction offered by Eq.
1

10

100

0.001 0.01 0.1 1
Ca

L/
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Fig. 13. The variation of the dimensionless streamwise lengthscale as a functio
lines are the functions Ca�1/3 and Ca�1/2.
(14). However, it is reasonable to suspect that the extent
of the agreement down to the numerical coefficient in Eq.
(14) is probably fortuitous.

The inertial scaling law, Eq. (13), may also be recovered
by requiring that the capillary waves caused by the step dis-
turbance remain stationary. In other words, the length of
the capillary waves (the streamwise length scale) is such
that their group velocity balances the surface velocity of
the undisturbed film. (Waves travel at their group velocity,
which for capillary waves is higher than their phase veloc-
ity, i.e. they propagate ahead of a moving disturbance. This
explains why in the present reference frame – where the dis-
turbance is fixed and the liquid has a free surface velocity –
the capillary waves appear before the steps.)

This equivalent approach is rigorously substantiated by
solving the Orr–Sommerfeld equation subject to the appro-
priate free surface boundary conditions. A standard spec-
tral solver has been used (Schmid and Henningson, 2001)
and the linear phase and group velocities have been com-
puted as a function of Re, We and length of the wave.
Thus, it has been confirmed that – inside the parametric
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n of Ca for Re = 0.001, 5, 10 and 20. Points are computational data and
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region defined by Eq. (14) – the restriction to wavetrains
traveling with the free surface velocity leads to wavelengths
in agreement with the prediction of Eq. (13).

The above approach may be demonstrated analytically
by a very simple model (albeit, of questionable accuracy).
If the film flow is assumed inviscid, with a uniform velocity
profile and subject only to capillary restoring forces, then
the classical water wave results apply. Thus, phase and
group velocities are respectively c2 = (rk/q)tanh(kH) �
rk2H/q and cg � 2c, where the wavenumber k = 2p/L. By
demanding that cg be equal to the free surface velocity,
gH2/2m, the scaling of Eq. (13) is readily recovered.

4.2. The flow structure at a step-in

Two interesting effects of inertia have been observed at a
step-in: (i) The decline and disappearance of the capillary
waves upstream of the step. (ii) The expansion of the sep-
aration eddy that forms at the edge of the step. The results
of Section 3.2 have shown that the former transition is gov-
erned by the Weber number, and therefore occurs when
inertia overcome capillary effects. Also, the separation eddy
has been shown to form at very small Re, to remain rela-
tively restricted in size at intermediate Re, and then to grow
continuously after the inertia-capillary transition.

Based on the above observations, we may envision the
following three stages in the evolution of the flow with
increasing inertia: At zero Re, the falling liquid does not
possess momentum to bridge the gap at the step-in, and
is trapped at the edge of the overhang. The curvature of
the liquid bulge thus formed results in a positive capillary
pressure, which provides the force to drive the liquid hori-
zontally along the face of the step.

At low Re, the mechanism remains qualitatively similar
as long as capillary forces dominate inertia forces: Falling
liquid masses are decelerated at the edge of the step, their
x-momentum turning predominantly into capillary poten-
tial energy. This process leads to the formation of a pinch
at the edge of the step, which gives the impression that the
flow is chocked (Kalliadasis et al., 2000). A convenient rep-
resentation of the flow structure is provided by a contour
plot of pressure. Such a plot is shown in Fig. 14a for the
conditions d = 1, Ca = 0.075, Re = 10. It is evident that
the capillary pressure at the free surface determines the
pressure profile throughout the entire film, and a gradual
drop is observed from the maximum below the capillary
ridge to the minimum after the pinch, the latter being prac-
tically equal to the atmospheric pressure.

With increasing Re, the liquid progressively resists cap-
illary arrest at the steep topographic change. Representa-
tive of the pressure distribution under these conditions is
the contour plot of Fig. 14b, which corresponds to d = 1,
Ca = 0.075, Re = 50. Here, we observe that the capillary
pressure at the free surface ceases to be representative of
the distribution inside the film, and a pronounced low-pres-
sure region starts to develop downstream of the pressure
singularity at the edge. Indeed, both op/ox and op/oy expe-
rience there a negative jump, as may be readily verified by
the discontinuous change of terms such as uou/ox and uov/
ox when moving downward along the overhanging wall
and into the flow. The low-pressure eddy plays a key role
in deflecting the film towards the wall and thus preventing
its detachment advocated by the component of gravity nor-
mal to the inclined free surface.
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Finally, at high enough Re the capillary waves have
totally disappeared and the film leaves the overhanging
wall in the form of a free-falling sheet with minimum pres-
sure losses at the edge. The re-attachment point of this
sheet to the retracted wall moves further downstream the
higher the Re. Because of the abrupt change in momentum
direction that takes place there, the reattachment point
appears in a pressure contour as a local maximum
(Fig. 14c, for d = 1, Ca = 0.075, Re = 100).

The above steady-state analysis of the flow structure at a
step-in is based on the premise that the liquid always
remains attached to the wall. It is natural to expect that,
for a deep enough step, the film will detach and turn into
a waterfall. The convergence of our numerical scheme in
the range of d considered is taken as an indirect proof that
a solution with the liquid fully attached is possible. Whether
this solution is stable, and thus observable, is a different
question. For example, the transition from an attached to
a detached liquid clearly relates to whether air can access
inside the flow, and this could occur as a result of an insta-
bility of the presently computed steady flow.

With respect to the question of stability, we draw atten-
tion to the discussion by Kalliadasis and Homsy (2001) and
by Davis and Troian (2005) on the effect of recirculation
below a capillary ridge on its robustness. In particular,
the Stokes ridge at a step-in was shown by them to be sta-
ble, whereas a deceivingly similar capillary ridge behind a
progressing contact line is unstable to transverse distur-
bances and breaks into fingers. The different behavior in
the two flows was attributed by the latter authors to the
existence of a recirculation region in the latter and its lack
in the former.

4.3. The flow structure at a step-out

Apart from the evolution of the capillary features
upstream of the step (which is similar to the already dis-
cussed evolution at the step-in), the main characteristic of
the flow structure at a step-out is the inertial ridge. Thus,
two questions arise from the results presented in Section
3.3: (i) Can we predict the conditions for the onset of the
ridge? (ii) How does the structure of the flow evolve para-
metrically with increasing inertia?

Relative to the first question, we presume that at low/
intermediate Re the inertia of the ejecting liquid is balanced
mainly by surface tension (that resists deformation) and
gravity (that pulls the liquid downward). Thus, at small
deformation there is no significant contribution from an
inertial mechanism, an assumption that seems justified in
view of the postponed appearance of a separation eddy
(Fig. 11). The aforementioned balance is expressed by the
following order-of-magnitude equation:

qU
ðUH=LÞ

L
� r

H

L3
þ qg ) Re

3

� Ca�1 H
L

� �
þ L

H

� �2

; ð15Þ
where inertia is now in the y-direction and is represented by
terms such as uov/ox or vov/oy, with v scaling like (UH/L).
Here, as in Eq. (12), viscous forces are included implicitly
through the definition of the velocity scale, U. Thus, the
term ‘‘qg” on the r.h.s. of Eq. (15) actually represents the
local imbalance between gravity and viscous forces.

The key parameter is L, the lengthscale in the stream-
wise direction, whose evolution at the onset of the ridge
is shown in Fig. 9b. At high Ca (low surface tension), the
deformation induced by the inertial jet exiting the step is
predominantly determined by the width of the protruding
liquid, which is roughly equal to the liquid film thickness.
For L = H, we obtain from Eq. (15)

Re
3
� Ca�1 þ 1) Re � Ca

1þ Ca
� const: ð16Þ

With decreasing Ca, L grows and eventually scales accord-
ing to Eq. (11). This happens because the liquid exiting the
step-out has initially no x-momentum, and consequently
the streamwise lengthscale is determined by a balance of
the remaining capillary and gravity forces. Substituting
Eq. (11) into Eq. (15) leads to the prediction

ReCa2=3 � We2=3 Re1=3 � const: ð17Þ
In Fig. 15, we replot the data of Fig. 9b about the onset

conditions, as well as the above asymptotic predictions
Eqs. (16) and (17), and note a very satisfactory agreement.
The failure to express Eqs. (16) and (17) solely in terms of
We number indicates that viscous forces have a non-trivial
role on the onset of the inertial ridge, perhaps through a
boundary layer effect. The 1/3 exponent of Re in Eq. (17)
suggests that the main viscous effect is along the free
streamline of a separated region rather than along a no-slip
wall. A reasonable conjecture is that the relevant separated
region is the upstream eddy at the foot of the step (see
Fig. 11).
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Next, we discuss the structure of the flow using the pres-
sure field as a diagnostic. Fig. 16 shows pressure contours
with increasing Re for Ca = 0.075, and reveals two different
mechanisms: At low inertia, the pressure distribution inside
the film is dictated by the capillary features at the free sur-
face. Thus, the negative curvature at the depression in front
of the step, in combination with the positive curvature over
the step, create an adverse pressure gradient that deceler-
ates the liquid upstream of the step. Evidently, this mecha-
nism persists up to higher Re the stronger the capillary
forces.
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Fig. 16. The evolution with increasing Re of the pressure field (bright:
high, dark: low) around a step-out with d = 1.5, for Ca = 0.075. Re = 20
(a), 60 (b) and 100 (c).
At the opposite end of high Re, inertial forces overcome
capillary forces and this is indicated by the increasing stag-
nation pressure at the face of the step. Simultaneously, the
inertial singularity at the edge creates a low-pressure region
behind the step by the same mechanism discussed in con-
junction with the step-in. However, because of the role of
gravity (which is presently assisting the liquid to stay
attached to the wall), flow separation downstream of the
edge is postponed to even higher Re.

The above two mechanisms explain the parametric var-
iation in the size of the inertial ridge, as depicted in Fig. 9a.
More specifically, the low-Re behavior – where the size of
the ridge varies strongly with Ca – is attributed to the cap-
illary mechanism and the high-Re asymptote to the inertial
mechanism.

Finally, we note that –similarly to the analysis of the
step-in – the above steady-state analysis of the flow struc-
ture at a step-out is based on the premise that the liquid
always remains attached to the wall. It is natural to expect
that, for a combination of deep enough step and high
enough inertia, the film will detach from the wall either per-
manently or temporarily. This phenomenon, which has
been named the ‘‘teapot effect” (Kistler and scriven,
1994) is governed by contact-angle hysteresis a topic
beyond the scope of the present work.

5. Conclusions

We have investigated numerically the parametric evolu-
tion with increasing inertia of vertical, steady film flow
along isolated step-ins and step-outs. The capillary ridge
before a step-in and the capillary depression before a
step-out have been shown to change their streamwise
lengthscale in a way that is directly predicted from an
order-of-magnitude balance of gravity, capillary and iner-
tia forces.

The computations have further indicated that the height
of the capillary features first grows but then diminishes
with increasing inertia. Their disappearance occurs when
inertia forces dominate capillary forces, and is accompa-
nied by a displacement of the key dynamics from upstream
to downstream of the step. In particular, the change in flow
direction imposed by the step is accomplished at low Re by
a capillary mechanism operating before the step, and at
high Re by an inertial mechanism operating after the step.
The essence of the latter is a low-pressure region develop-
ing behind the step, which is triggered by the pressure sin-
gularity at the edge.

At a step-out, a new downstream free surface feature
appears at high enough Re, caused by liquid overshoot in
the horizontal direction. The conditions for the onset of
this inertial ridge are correctly predicted by an order-of-
magnitude balance of gravity, capillary and inertia forces
that also takes into account the parametric variation in
the streamwise lengthscale. The height of the inertial ridge
is shown to be restrained by capillary forces at low Re and
by inertial forces (the low-pressure region) at high Re.
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Finally, we note that all the aforementioned results are
derived based on the assumptions of steady flow and per-
manent attachment of the liquid to the wall. When multiple
solutions are available, the way in which the flow is actually
established will probably have a bearing on the final out-
come. To this end, a complementary transient analysis
might be useful (see for example Khayat et al., 2004). Also,
the stability properties of the presently derived steady flows
are worth investigating, in particular with respect to trans-
verse instabilities that may corrupt the two-dimensional
free surface features. This investigation will hopefully be
undertaken in future work.
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